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Abstract. In the variational approach to quantum statistics, a smearing formula efficiently
describes the consequences of quantum fluctuations upon an interaction potential. The result is
an effective classical potential from which the partition function can be obtained by a simple
integral. In this work, the smearing formula is extended to higher orders in the variational
perturbation theory. An application to the singular Coulomb potential exhibits the same fast
convergence with increasing orders that has been observed in previous variational perturbation
expansions of the anharmonic oscillator with quartic potential.

1. Introduction

The variational approach to quantum statistics, initially based on the Jensen—Peierls
inequality for imaginary-time path integrals [1, 2], yields upper bounds for the free energy
of many quantum mechanical systems at all temperatures and coupling strengths, which
are often quite close to the exact results. By abandoning the inequality, the approach has
been extended to a systematic variational perturbation theory [3], in which the original
approach is just a first-order approximation. Detailed calculations [4—6] and extensions [7—
9], showed an exponentially fast convergence of this systematic theory, which was recently
explained [10]. Thermodynamic and some local quantities can now be evaluated to any
desired accuracy, starting out from an ordinary perturbation expansion of arbitrary order.

A particularly attractive feature of the original variational approach was the existence
of a smearing formula in the form of a Gaussian convolution integral which compactly
accounts for the effect of quantum fluctuations upon the interaction potential and other
local quantities [2, 9]. This formula was applicable to some classes of singular potentials
such as the Coulomb potential [9, 11]. There is a definite need for such a formula in
higher orders of variational perturbation theory, which so far has been based on Feynman
diagrams, thus being limited to polynomial interactions. The purpose of this paper is to
derive the desired higher-order smearing formula. This will be done in section 3 after a
brief review of variational perturbation theory in section 2. An application to the Coulomb
potential is given in section 4, where the effective classical potential is calculated to
second order in the variational perturbation theory. Its zero-temperature limit yields in
section 5 a variational perturbation expansion for the ground-state energy up to second
order. Section 6 reproduces this result by a direct variational treatment of the Rayleigh—
Schiddinger perturbation expansion, and carries it to third order to demonstrate the fast
convergence of the variational perturbation expansion.
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2. Review of variational perturbation theory

Consider a quantum mechanical point particle of magsnoving in a one-dimensional
time-independent potentidl (x). Its thermodynamic partition function is given by the
imaginary-time path integral [9]

Z = y{l)x(t)exp{—%fl[x(t)]} Q)
with the Euclidean action
B M
Alx ()] = f dr [7&@)2 + V<x<r>)] )
0

and the abbreviatiop = 1/kgT. The pathsx(r) satisfy the periodic boundary condition
x(0) = x(hB). Following Feynman [1], we decompose the path integral for the partition
function (1) into an ordinary integral over the time-averaged position

L[ ®
X0=%X= — T x(7)
hB Jo
and a remaining path integral over the fluctuations
8x(t) = x(1) — xo 4)
aroundxo. Thus we rewrite (1) as an integral
+oo
Z = dxg Z7° 5)
—0oQ0

over alocal partition functionZ*° which is defined by the restricted path integral

Z¥ = 7{ Dx(1)8(X — x0) exp{—%A[x(T)]} (6)
with the notation

- M - 27h%B

de = m d.xo 5()6 — XO) = 8(-x - xO)- (7)

The free energy associated with the local partition function (6) is defined asfféneive
classical potentia[9]

1
Vet (xg) = g logz® ®)
which accounts for the effects of all quantum fluctuations.
In order to calculate/ ¢ (xq), we decompose the Euclidean action (2) into a sum
Alx(0)] = AG[x(0)] + Aig[x(1)] 9)

where the first term is the action of a harmonic oscillator centred arogndith an
undetermined locdirial frequency2 (xo),

hp M M
Aglx (] = / de {3x<r)2+ - L (xo)lx(0) —xo]z} (10)
0
and the second term is the remaining interaction

g
Ailx ()] = A dr Vig (x (1) (11)

int
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of the potential difference
M
Vi (00) = V(x) = S Q% x0)(x — x0)”. (12)

With this decomposition, the local partition function (6) may be expanded in powers of the
interaction potential (12) around the local harmonic partition function

%Dx(r) §(x — xop) exp{ = AS [x(r)]} (13)

The expansion reads

1 hp hp hp
VAR Z?zo{l— }_z/ dry (Vit (x (1)) g / dfl/ dro (Vi (x (12) Vit (x (T2) )y

"B hp hp
——~3, dry f drz / drs ¢ .m<x(r1>)V.ﬁ‘z(x(rz»v;f(x(rs)»’;f+---}
(14)

where the xo-dependent expectation valudgi(x(zy))... F,(x(t,)))g are correlation
functions of the local harmonic trial system:

1 ~
(Fi(x(t1)) ... Fy(x(ta)))g = 75 74 Dx(t) F1(x(t1)) - .. Fu(x(72))8(X — x0)
Q

X exp{—%Ag[x(r)]} . (15)

The correlation functions can be decomposed into connected ones via the standard cumulant
expansion [9, 12], yielding for the effective classical potenti&f-®(xo) the following
perturbation expansion [9]

1 ("
velixg) = Fg + ﬁ dra (Vigt (x (7))

Eﬂ T
—2}7}3 /O dr [ dea (Vs ) Vit )

1 17 17 7B
o5 /O dry /0 drz [ dus (Vi (e Vigd (22 Vi (1)
(16)

The first term on the right-hand side is the free energy of the local harmonic partition
function
FY = 1 logZy = 1 log Sm_hh’B—Q(xO)/Z. a7
B p hB2(x0)/2
The second term contains the local harmonic expectation value of the potential for which
there exists the above mentioned smearing formula which we want to extend in this work.

The cumulant in the third term is given by the following combination of expectation values:

(Vi (@) Vit (1)) g = (Vipg (x (7)) Vit (2 (22))) g — (Vi (x (7)) @ (Vi (x (72))) 5 -
(18)

By construction, the effective classical potentiaf™c (xp) in (16) does not depend
on the choice of the frequenc® (xp) in the trial action (10). However, when truncating
the infinite sum (16) after thevth order, we obtain an approximatiowy(xo) for the
effective classical potentiaV®™¢(xp) with an Q(xg)-dependence, which decreases with



8310 H Kleinert et al

increasing ordeV of the expansion. With the expectation that the optimal truncated sum
W,f,z(xo) depends minimally on the frequen&y(xg), we therefore determing (xg) from
the extremality condition

Q
Wy o) _ (19)
32 (xo)

If this has no solution, we demand as the next-best condition of minimal dependence on
Q(xp) [3, 5, 8, 9]

32W 3 (xo) _
922 (xo)

The result is called theptimal frequencyQy (xg) of order N. It yields the truncated
sum Wy (xo) = Wi*™ (xo) which represents the desir@dth-order approximation to the
effective classical potential ¢ (xq). The first-order approximatio; (xq) coincides with
the original variational result of Feynman and Kleinert [2] which satisfies the Jensen—Peierls
inequality and guarantees the existence of an extremum (19).

The accuracy of the approximate effective classical potefitia{xo) can be assessed
by the following considerations [9]. In the limit of high temperatures where> 0, the
approximationWy (xo) becomes exact for any':

(20)

‘!@O Wy (x0) = V (x0). (21)

At low temperatures, wherg — oo, we obtain from (5) and (8) an approximation to the
free energy in form of an integral over the time-averaged posiipn

+00

1 -
Fy = ~3 Iog{ dxo exp[—ﬁWN(xo)]} (22)

—0Q

whose integrand is centred sharply around the minimifi of Wy (xo). Performing this

integral in the saddle-point approximation yields &ith-order approximatiorEI(\?) for the
ground-state energf© of the quantum system.

EQ =min lim Wy (xo). (23)
Xxo B—o0

The same approximation to the ground-state energy can also be obtained by a variational
resummation [9] of the Rayleigh-Sduinger perturbation series faf©@. This will be

shown in section 6 for the ground-state energy of the Coulomb potential up to the order
N =2.

3. Evaluation of path integrals

In order to calculate the different terms in the variational perturbation expansion (16), we
must find efficient formulae for evaluating local correlation functions of type (15). For this
we observe that, by fixing the temporal averages at xo in the path integral, the zero
Matsubara frequency, = 0 is removed from the Fourier decomposition of the periodic
paths

o0
x(t) = x0 + Z(xmeiw”’f + x;’;efi“’”’t) Wy = 2rm/hB. (24)

m=1
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In fact, the restricted integration measqfé)x(r)g(f — xo) in (15) may be decomposed
into a product of ordinary integrals over real and imaginary pgftendx)" of the Fourier
components,, according to [9]:

o0 400 400 2
fpx(r)é(f —x0) =[] ( dx'® dx'™ @) (25)

m=1 -0 -

The zero-frequency componery remains unintegrated. With this decomposition, the basic
local pair correlation function of the fluctuatiods(z) in (4) can immediately be calculated
from (15) as a Matsubara sum without the zero mode:

G 2 & coswy,(t — 1))
Gg(t, ') = (3x(2)éx(T))g M,B W2+ (o) (26)
Performing the sum yields the explicit result
x h coshR2 (xo)|t — 7’| — B (x0)/2] 2
0 N = — = 27
G2t T) = S0 { SINMFBS (x0),2] 7B (o) 27)
The first term is the ordinary oscillator correlation function of frequeficy
COSwm T —
Ga(r,7) = (x(Dx(T))e = — Z ) (28)

w2 + Q2(xg)

m=—00

while the last term subtracts the zero mode which is absent in (26). This absence has the
important consequence that

hp

dr Gg(z, ') =0. (29)
0
Using (27), the expectation values in (15) can easily be calculated for a polynomial

potential using Wick’s contraction rules, by which the expectation values can be reduced
to sums over products of pair correlation functio@§ (¢, /). In order to abbreviate the
notation and to emphasize the dimension (lerfgtif)these quantities, we shall denote the
local Green functions in (27) from now on bz)ft,(xo). The harmonic expectation value of
any odd power: in the fluctuation variabléx(t) is zero. For evem, the Wick expansion
reads

<]‘[ 6x<rk>> Za (x0)...aZ, .. (xo) (30)
k=1

where the sum runs over alh — 1)!! pair contractions. For an exponential, Wick’s rule
implies

hB X0 hB 17
<exp[i dr j(r)8x(r):|> = exp[ — %/ dr dr/j(r)afr,(xo)j(t/)]. (31)
0 Q 0 0

In the special casg(t) = > ,_,uxd(t — 1), we obtain the important formula for the
expectation value of a product of exponentials

< ﬁ éuka(Tk)>; — eXp|: Z Z ”karmr (xo)uy i| (32)

k=1 =1k=
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After Fourier-decomposing the functiong (x), ..., F,(x) in (15), formula (32) yields
directly the desired smearing formula [13]

n +o0 1
(Fi(x(t1) ... Fy(x())g = |:1_[ dxx Fk(xk):|
ko1 J oo \/ (27)"Detla? , (x0)]
X exp[ — 1' Z Z Sxx ar_kfk/ (xo)Sxkr] (33)
2o

wherea;z,(xo) denotes the inverse of the symmettig n matrix afk 7 (X0). This smearing

Ty
formula determines the different harmonic expectation values in the variational perturbation
expansion (16) as convolutions with Gaussian functions.
Forn = 1, the smearing formula (33) reduces to the previous one [2, 9]
+00

(Fix(eg = [ da R —— exp[ (xl—xo>2}
1 Vg = 1 Fi(x) — A0
—o0 V27a2(x0) 2a%(xo)

wherea?(xo) denotes the -independent diagonal matrix eleme:ﬁ (x0). For polynomials
Fi1(x), the smearing formula (33) reproduces Wick’s rule: odd powergxi(xr) have
vanishing local correlation functions, whereas even powers result in (30), which for
coinciding timesr; reduces to

([6x(w)]")g = (n — DMa" (xo). (35)
For two functionsF;(x) and F»(x), our smearing formula (33) reads, more explicitly,
1

J@0at o) — ad, (xo)]

ox _az(xo)(xl — x0)? — 242, (x0) (x1 — X0) (x2 — x0) + a?(x0) (x2 — x0)*
P 2la*(x0) — a,, (0] |

(34)

+00 ~+00
(F(x(2) Falx (22))2 = / dry / dvz Fu(x1) Fa(x2)

(36)
SpecializingF>(x) to the square of the functiodx, we obtain the useful rule
() [3x (e = a?(u) | 1 — 20 | (s ey
1 1 2)7lq = 0 a*(x0) 1 Ve
a‘?l‘rz('x ) Xy
+ 04(x0§) (P (m)[Bx (w)]D) @37)

which reduces the smearing procedure for different timeand t, to corresponding ones
at equal times; = 1o. With this we immediately yield, for instance,

([8x (zD]?[8x(z2)]2) & = a*(xo) + 242 (x0). (38)

T1T2
In three dimensions, the trial potential contains a3 frequency matrix2;; depending
on the time-averaged positiary and reads

M 3
> .Zl Q7 (o) (x; — x0i) (xj — x0;) (39)
i,j=
while the interaction potential (12) becomes

M 3
Vit@) = V@) — = ) Qf@o)(xi — x0)(x; — xo)). (40)
i,j=1
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Assuming the potential to depend only or= |x|, i.e. V(x) = v(r), the frequency matrix
possesses only two invariant matrix elements, a longitudinalSdney,) and a transversal
oneQ(ro) [9, 11]. The interaction potential (40) can then be decomposed into a longitudinal
and a transversal part according to
Q2 (o) = Q2(r) 22 + Q2(ro) (3,-, - x°"’§°~") (41)
‘ To To

so that (40) may be rewritten as

M
Vit (@) = v(r) = QL (o) 8]} + Q7o) [s2]7) (42)

with obvious definitions of the longitudinal and transverse projecttansand szt of the
fluctuationssx.
To first order, the anisotropic generalization of the smearing formula (34) reads [9, 11]

+00 2 —19)?
(Fu@(m))E, o = f oy Fyfay) exp{—w—i - M} - (43)
o= L. Jarraa 2k

For the squares of transverse and longitudinal fluctuations, this generalizes (3%)wizh
to

@S0 =20F  ([Bz@]})g, o = af. (44)
The second-order smearing formula (36) becomes in three dimensions

+00 +00
(Fu((ty) F2(z(12)3, o = f d®xy / d®xz Fi (1) Fa(x2)

—0Q0 o0

1

3(,4 4 / 4 4
(277) (aT - aTrlrz) ag — aLTlfz

2.2 2 2.2
artTit — 2a-|-rlr2:c1-rw2'r + atx5r
X expy —

4 4
2(aT - aT‘fsz)

X

af(x1 —ro)® — 2at, . (x1L — ro)(x2L — ro) + af(x2L — ro)?
x expy — 12
4 4
2(Cl|_ - aLrlrz)

(45)
so that the rule (37) for expectation values is generalized to
at
(Fu(x(t)[82(12)]5)9, o = 245 |:1 - %} (Fi(z(t)) g, 0,
T
a$T1Tz 2\ro
+ a—4(Fl(w(fl))[fsw(fl)]ﬂQT,QL (46)

T

2\ I 2 af‘tltz r
(Fu@(r)Be@I))E, o, = af | 1= =52 [ (A@@))E, o,
L
afl’ﬂ.’z 2\ I
+_af (Fu(@(z)[8z(x0)]0) g, ., - (47)
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SpecializingFi(x) to a quadratic function, we obtain the corresponding generalizations of
(38)

([sx(zD)]2[82(12)]2) ggT o =4af +4a7, (48)
([ ()5 [8x(t]0)S, o, = 2a5al (49)
(B be(@D)S, o = at + 2a(,. (50)

4. Application to Coulomb potential

Let us demonstrate the use of the new smearing formulae by calculating the effective
classical potential of the three-dimensional Coulomb potential
2
e
v(r)=—— (51)
r

up to the second order in the variational perturbation expansion, thus going beyond the
known first-order results in [9, 11]. To this end we express the Coulomb potential (51) as
a ‘proper-time’ integral

1 +o0 d3k 400 2 ikw
?:4”/,00 W/o do ok ik (52)

whereo has the dimension (length)and find the expectation value

T —
|w<r1)| oo, b —aL)x2 P

From a straight-forward three-dimensional extension of (16), the first-order variational

approximation to the effective classical potential is then [9, 11]

2 sinh[iBQ21/2] Io sinhﬂa_ﬂQL/Z] M
hBSQ2r/2 B hBL/2

2 |2t )
/ (@2 — aL)/\2 +a? Xp{_ﬁk } 4)

where we have omitted the argument from all functions on the right-hand side. A
similar expression was derived in the isotropic approximatipn= Qt with the help of
Gaussian wavepackets in the context of plasma physics for the purpose of faster simulations
of molecular dynamics [14-16].

By inserting the ‘proper-time’ integral for the Coulomb potential (52) into the rules (46)
and (47), we find

<|m( EC Rl >M \/>f > exp{ }

2 2 x2
x ! i - i } (55)

Wit (rg) = {zszT a? 4+ Q2a?)

(@2 —aP)r2+a?  [(@® —aP)r2+ a?]?

ré ab +at [r2 —a AZ]
sx di ——xz} L~ Tlun0 L“ 1 (56
(et > V= / o] e -aevay O
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Note that these results are also special cases of the general expectation value

expl — atrg
< 1 Fle@)) ro 1 [t 4 P 2[af — afrm + 2a?0]
B S [ 1y
[z (@)l fr. 2 0 [a"l! - a%nrz + 2[1%0] aL aLrltz + 2(1
+00 2 2 2
X / d®x F(x) exp{ — 4(aT 1— o)y 5
oo 2[at — at,,,, + 2at0]
(ClL +20)(xL —r0)® + ZaLTmro(xL — ro) } (57)
2[a} — a,_mz + 2a?0]
which gives us the additional local expectation value
1 1 ro +o0o +o00 1
R A e S
lz(t)] ()] [, 0 7 Jo 0 [af + 201][at + 207] — a7,
1 { rdla? + o1+ 02 —af, ]
X T2 2 4
\/[aL + 201][a|_ + 20'2] aLllfz [aL + 201][aL + 202] ALy,
(58)

From these smearing results we calculate the connected correlation functions of the
interaction potential (40) according to the cumulant law (18), and insert these into (16)
to obtain the second-order effective classical potential

Q1,2 Qr,Q 2(12
WzT' t(ro) = W;LT (r )+ oh .
! 2QrI4A? QUIMrEAY — a?A?]
X'/d)‘{ 24212 42 L2022L 2}eXp{_ 02)‘2}
0 [(a? — a?)A? + a,_] Ul(as — af)r2 + a,_] 2a
203 + Q1) /”" du [ i o)
— — T
4% 2h%B ! 2] [2()] g, o
(59)
with the abbreviation
4 h[4+h _2/329 —4coshBQr | +hBQT, sinhiBQr ]
Iy = (60)

SﬂMZQ%L sintP[hBSQr./2]

which is a function ofrg of dimension (lengttf) After extremizing (54) and (59) with
respect to the trial frequenci&sr, 2| according to (19), which has to be done numerically

we obtain the first- and second-order approximations for the effective classical potential of
the Coulomb system. The isotropic approximati@fs= 2, in the first and second order

are plotted in figure 1 for various temperatures. The second-order curves lie all below the
first-order ones, and the difference between the two decreases with increasing temperature
and increasing distance from the origin. Figure 2 shows exemplarily that the anisotropic
approximation slightly deviates from the isotropic one. The difference between both is only
visible for intermediate distances from the origin.



8316 H Kleinert et al

O H H . . | | |
WI(TO) WQ(T‘O)
-0.2
——0'4‘: _______ ,,,ffj' """" e
~0.6}
-0.8F /// |
f"/ V(TO)
-1 I /{/ |
0 TE T 2 7.5 s . |
o

Figure 1. Isotropic approximations to the effective classical potential of the Coulomb system
in the first (lines) and second order (dots). The temperatures are 0.0001, 0.001, 0.01, 0.1 and
oo from the top to the bottom in atomic units. The high temperature limit is the same for all
approximationsWy (rg).

5. Zero-temperature limit

In order to check our results we take (54) and (59) to the lifnit> 0, whereW *(ro) and
WSk(ro) reduce atrg = 0, according to (23), to the ground-state energy of the Coulomb
system. Atrg = 0, the frequencies are isotropity. = Qr = Q for symmetry reasons, thus
simplifying the evaluation (54) and (59). Taking into account the low temperature limit of
the two-point correlations (27)

h
lim a2 - g Q- 61
B 00 azkrk, (:EO) ZMQ(:I:O) ( )
we immediately deduce for the first-order approximation (54x@t= 0 with Q = Q(0)
the limit
3_ 2 [MQ
E(O)Q T Q0) = “FO - S I 2. 62
U v (62)

To second order, the limit is more involved. Performing the integrals evendoy in
(58), we obtain with (18) the connected correlation function

< 1 1 >° 1 2 2,0 2

— ) = — arcta —1-—.
lz(w)] lz()l /g, af,0)  mwa7,(0) Ar,7,(0) maz,,(0)

(63)

Inserting here the zero-temperature limit (61), we can integrate these expressions over the
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- O B 2 H LI .
[/prf)]‘:?QL (77{}) /f/
O£ \ o
-0.4F W) (T(}} \ /”w .
) 7
-0.6
~0.8 B T {/{féz’f“:”[a (ro)
\ mglfp#fﬁh (ro)
£ /«/‘Ql
S i
/'ﬁ/
T V(o)
~1.2
0 2 3 4 5
Tev

Figure 2. Isotropic and anisotropic approximations to the effective classical potential of the
Coulomb system in the first and second order at the temperature 0.1 in atomic units. The lowest
line represents the high temperature limit in which all isotropic and anisotropic approximations
coincide.

imaginary timesr, 72 € [0, 78], and find for larges

B 0 722202
ol o b, = e -T2
lz(r)| [e()l g, hQ 7 T

[ef”m arcsiny/1l — e=2i82 4 = |Oga(/3)

1 , 1t Iogu
~gloga— [ ]} (64)
with the abbreviation
1-/1—e 7%
alf) = —F——. (65)
1+V/1—e 22

Inserting this into (59) and going to the limit — oo, we find the ground-state energy

9 _ 3 Msz 4
Oy — i Q) = = _ =
EP(@) = lim WE(0) = 770 - N e (
Postponing for a moment the extremization of (62) and (66) with respect to the trial
frequency(, let us first rederive this result from a variational treatment of the ordinary
Rayleigh—Schidinger perturbation expansion for the ground-state energy.

M,
1+log2— E> et (66)
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6. Variational treatment of Rayleigh—Schrodinger perturbation expansion

According to the rules laid out in [9], we must first calculate the ground-state energy for
the Coulomb potential in the presence of a harmonic potential of frequency

62

Vaux(®) = ﬂwzwz - - (67)
2 |

After this, we make the trivial replacement— +/Q2 + w? — Q2, and re-expand the energy
in powers of the difference? — 2, considering this quantity as being of the ordérand
truncating the re-expansion accordingly. At the end wewet 0, since the original
Coulomb system contains no oscillator potential. Note that this limit is equivalent to a
strong-coupling limit of (67) with respect t#. The result of this treatment will coincide
precisely with the expansions (62) and (66), respectively.

The Rayleigh—Sclidinger perturbation expansion of the ground-state en&fi(w)
for the potential (67) requires knowledge of the matrix elements of the Coulomb potential
(51) with respect to the eigenfunctions, ; ., (r, 9, ¢) of the harmonic oscillator with the
frequencyw [9]:

anmn A m' :/ d(p/ dﬁ Slnﬁ/ drr anm(r 19 (p)_wn l’m(r 19 (P) (68)

\/m Ma) (+1/2
1;anlm(rﬁgo) F( +l+3/2) )

X L4172 (7 )exp{ E } Y1 (D, ). (69)

Here n denotes the radial quantum numbér (x) the Laguerre polynomials [17], and
Y. (9, @) the spherical harmonics obeying the orthonormality relation

2 b g
/ d(p/ dﬂ Sin‘l?Yle (197 (p)Y/’,m’(l?a 90) - 81,[’8m,m’~ (70)
0 0

Inserting (69) into (68), and evaluating the integrals with equation (2.19.14.15) in [18], we
find

v _ 2 [MoT(+DI(n+1/2) | T +1+3/2)
b mh rd+3 nn/\T(n+ 1 + 3)

xgFo(—n', 1+ 1, 31+ 3, 2 —n; 18118 (71)
with the generalized hypergeometric series [17]

00 k
sFala, az, a3 Br, f2; X) = ) (@2 (o3 X (72)

= (Bur(Bk kv
and the Pochhammer symb@!);, = I'(« + k)/ ' ().

These matrix elements are now inserted into the Rayleigh®8utger perturbation
expansion for the ground-state energy

V0.0,0:n,1,m Vin,1,m:0,0,0
Equ(w) = Eooo+Vvo,o,o,o,o+Z o

n,l,m

/
Z v V0,0,0:n,1,m Vn,1,m;0,0,0
- 0,0,0,0,0,0
[Eoo0.0 — Enim)?

EO,O,O - En,l,m

n,l,m
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’ /
+ Z VO,O,O;n,l,m Vn,l,m;n’,l’,m’Vn’,l’,m’;O,O,O
i Fray [E000 — Enmll Eoo0 — Ew.im]

T (73)

the denominators containing the energy eigenvalues of the harmonic oscillator
Epim =ho@n+1+3). (74)

The primed summations in (73) run over all values of the quantum numhbels=
—00,...,+00 andm = —I, ..., +l, excluding those for which the denominators vanish.
For the first three orders we obtain from (71)—(74)

3_ 2 M 4 M | M3
Eaux(a)) Eh(z) — ﬁ Twez - ; (1 + |0g 2— %) hqeél —C mee + .- (75)

with the constant

1 (13- 1 ®© > 1.3.. ..(21-1)
C—ns/z{; 2421 n2(n+13) ZZ 2-4....-2n
31
2

n=1n'=1
1-3-...- —1)3F I+1%504+3 2 —n;1
y (2n' — 1) sFa(—1', > 2 n )} ~ 00318 (76)
2:4.....-2n nn’(n—|—§)
The variational re-expansion procedure described after equation (67) replmebe first
term byQ (1—1)%2, to be expanded in the second one up to third ordelLalf‘,—l8 16 156.

Correspondingly the term:g/2 becomesZw. The factorw/2 goes over inta2V/2(1—1)Y/4,

to be expanded to second order in the second one, yieift(1 — ;1 — 2) = Z. The

next term in (75) happens to be independentvadnd needs no re-expansion, whereas the
last term remains unchanged since it is of highest order. In this way we obtain from (75)
the third-order variational expression

—8——

o 15_ 21 [MQ, 4
E(@) = 35h - 1 (

We are now ready to optimize successively the expansions of first, second, and third order
(62), (66) and (77) with respect to the trial frequerRy From the extrema we find the
frequencies

M M3
) et —c, [ =—¢éb. (77)

1+log2— —
g R? RQ

2

16 Me* M
6 Me szgzc/Z_e (78)

=Kk = 9nﬁ3 Re

wherec’ & 0.7254 is the largest of the three solutions of the cubic equatioi181c% /7 +
16¢. The corresponding approximations to the ground-state energy are

Meé*
EP(Qy) = —yn = (79)
with the constants
4 5+ 4log 2
n=o-~0424 = 22002 500474  y3~0490 (80)
T T

which quickly approaching the exact valyg, = 0.5, as shown in figure 3.
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Figure 3. Rapid approach of the variational approximations to the ground-state eE%?gyZN)
to the correct ground-state energy0.5 (in natural energy units/¢*/h%). The right-hand
logarithmic plot shows a slope 1.

7. Summary and outlook

In this work we have extended the rules for calculating higher orders in variational
perturbation theory from polynomial to non-polynomial interactions. The effective classical
potential of a quantum mechanical system is obtained from an extension of the known first-
order smearing formula, and involves certain convolutions with Gaussian functions. As
an example, we have applied the higher-order smearing formula to the Coulomb system.
We have illustrated the fast convergence of the variational perturbation expansion even
for such a singular potential. The new smearing formula will help improving the existing
first-order variational results for partition function and density matrix, also in dissipative
guantum systems [19, 20]. It will also be of use in treating field theories with nonpolynomial
interactions such as sine-Gordon and Liouville theories.
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