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Germany

Received 10 July 1998

Abstract. In the variational approach to quantum statistics, a smearing formula efficiently
describes the consequences of quantum fluctuations upon an interaction potential. The result is
an effective classical potential from which the partition function can be obtained by a simple
integral. In this work, the smearing formula is extended to higher orders in the variational
perturbation theory. An application to the singular Coulomb potential exhibits the same fast
convergence with increasing orders that has been observed in previous variational perturbation
expansions of the anharmonic oscillator with quartic potential.

1. Introduction

The variational approach to quantum statistics, initially based on the Jensen–Peierls
inequality for imaginary-time path integrals [1, 2], yields upper bounds for the free energy
of many quantum mechanical systems at all temperatures and coupling strengths, which
are often quite close to the exact results. By abandoning the inequality, the approach has
been extended to a systematic variational perturbation theory [3], in which the original
approach is just a first-order approximation. Detailed calculations [4–6] and extensions [7–
9], showed an exponentially fast convergence of this systematic theory, which was recently
explained [10]. Thermodynamic and some local quantities can now be evaluated to any
desired accuracy, starting out from an ordinary perturbation expansion of arbitrary order.

A particularly attractive feature of the original variational approach was the existence
of a smearing formula in the form of a Gaussian convolution integral which compactly
accounts for the effect of quantum fluctuations upon the interaction potential and other
local quantities [2, 9]. This formula was applicable to some classes of singular potentials
such as the Coulomb potential [9, 11]. There is a definite need for such a formula in
higher orders of variational perturbation theory, which so far has been based on Feynman
diagrams, thus being limited to polynomial interactions. The purpose of this paper is to
derive the desired higher-order smearing formula. This will be done in section 3 after a
brief review of variational perturbation theory in section 2. An application to the Coulomb
potential is given in section 4, where the effective classical potential is calculated to
second order in the variational perturbation theory. Its zero-temperature limit yields in
section 5 a variational perturbation expansion for the ground-state energy up to second
order. Section 6 reproduces this result by a direct variational treatment of the Rayleigh–
Schr̈odinger perturbation expansion, and carries it to third order to demonstrate the fast
convergence of the variational perturbation expansion.

0305-4470/98/418307+15$19.50c© 1998 IOP Publishing Ltd 8307
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2. Review of variational perturbation theory

Consider a quantum mechanical point particle of massM moving in a one-dimensional
time-independent potentialV (x). Its thermodynamic partition function is given by the
imaginary-time path integral [9]

Z =
∮
Dx(τ) exp

{
−1

h̄
A[x(τ)]

}
(1)

with the Euclidean action

A[x(τ)] =
∫ h̄β

0
dτ

[
M

2
ẋ(τ )2+ V (x(τ))

]
(2)

and the abbreviationβ ≡ 1/kBT . The pathsx(τ) satisfy the periodic boundary condition
x(0) = x(h̄β). Following Feynman [1], we decompose the path integral for the partition
function (1) into an ordinary integral over the time-averaged position

x0 = x ≡ 1

h̄β

∫ h̄β

0
dτ x(τ ) (3)

and a remaining path integral over the fluctuations

δx(τ ) = x(τ)− x0 (4)

aroundx0. Thus we rewrite (1) as an integral

Z =
∫ +∞
−∞

d̃x0Z
x0 (5)

over alocal partition functionZx0 which is defined by the restricted path integral

Zx0 ≡
∮
Dx(τ)δ̃(x − x0) exp

{
−1

h̄
A[x(τ)]

}
(6)

with the notation

d̃x0 ≡
√

M

2πh̄2β
dx0 δ̃(x̄ − x0) ≡

√
2πh̄2β

M
δ(x − x0). (7)

The free energy associated with the local partition function (6) is defined as theeffective
classical potential[9]

V eff,cl(x0) = − 1

β
logZx0 (8)

which accounts for the effects of all quantum fluctuations.
In order to calculateV eff,cl(x0), we decompose the Euclidean action (2) into a sum

A[x(τ)] = Ax0
� [x(τ)] +Ax0

int[x(τ)] (9)

where the first term is the action of a harmonic oscillator centred aroundx0 with an
undetermined localtrial frequency�(x0),

Ax0
� [x(τ)] =

∫ h̄β

0
dτ

{
M

2
ẋ(τ )2+ M

2
�2(x0)[x(τ)− x0]2

}
(10)

and the second term is the remaining interaction

Ax0
int[x(τ)] =

∫ h̄β

0
dτ V x0

int (x(τ )) (11)
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of the potential difference

V
x0

int (x) = V (x)−
M

2
�2(x0)(x − x0)

2. (12)

With this decomposition, the local partition function (6) may be expanded in powers of the
interaction potential (12) around the local harmonic partition function

Z
x0
� =

∮
Dx(τ) δ̃(x − x0) exp

{
−1

h̄
Ax0
� [x(τ)]

}
. (13)

The expansion reads

Zx0 = Zx0
�

{
1− 1

h̄

∫ h̄β

0
dτ1 〈V x0

int (x(τ1))〉x0
� +

1

2h̄2

∫ h̄β

0
dτ1

∫ h̄β

0
dτ2 〈V x0

int (x(τ1))V
x0

int (x(τ2))〉x0
�

− 1

6h̄3

∫ h̄β

0
dτ1

∫ h̄β

0
dτ2

∫ h̄β

0
dτ3 〈V x0

int (x(τ1))V
x0

int (x(τ2))V
x0

int (x(τ3))〉x0
� + · · ·

}
(14)

where the x0-dependent expectation values〈F1(x(τ1)) . . . Fn(x(τn))〉x0
� are correlation

functions of the local harmonic trial system:

〈F1(x(τ1)) . . . Fn(x(τn))〉x0
� =

1

Z
x0
�

∮
Dx(τ)F1(x(τ1)) . . . Fn(x(τn))δ̃(x − x0)

× exp

{
−1

h̄
Ax0
� [x(τ)]

}
. (15)

The correlation functions can be decomposed into connected ones via the standard cumulant
expansion [9, 12], yielding for the effective classical potentialV eff,cl(x0) the following
perturbation expansion [9]

V eff,cl(x0) = Fx0
� +

1

h̄β

∫ h̄β

0
dτ1 〈V x0

int (x(τ1))〉x0
�

− 1

2h̄2β

∫ h̄β

0
dτ1

∫ h̄β

0
dτ2 〈V x0

int (x(τ1))V
x0

int (x(τ2))〉x0
�,c

+ 1

6h̄3β

∫ h̄β

0
dτ1

∫ h̄β

0
dτ2

∫ h̄β

0
dτ3 〈V x0

int (x(τ1))V
x0

int (x(τ2))V
x0

int (x(τ3))〉x0
�,c

+ · · · . (16)

The first term on the right-hand side is the free energy of the local harmonic partition
function

F
x0
� ≡ −

1

β
logZx0

� =
1

β
log

sinhh̄β�(x0)/2

h̄β�(x0)/2
. (17)

The second term contains the local harmonic expectation value of the potential for which
there exists the above mentioned smearing formula which we want to extend in this work.
The cumulant in the third term is given by the following combination of expectation values:

〈V x0
int (x(τ1))V

x0
int (x(τ2))〉x0

�,c = 〈V x0
int (x(τ1))V

x0
int (x(τ2))〉x0

� − 〈V x0
int (x(τ1))〉x0

� 〈V x0
int (x(τ2))〉x0

� .

(18)

By construction, the effective classical potentialV eff,cl(x0) in (16) does not depend
on the choice of the frequency�(x0) in the trial action (10). However, when truncating
the infinite sum (16) after theN th order, we obtain an approximationW�

N (x0) for the
effective classical potentialV eff,cl(x0) with an �(x0)-dependence, which decreases with
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increasing orderN of the expansion. With the expectation that the optimal truncated sum
W�
N (x0) depends minimally on the frequency�(x0), we therefore determine�(x0) from

the extremality condition

∂W�
N (x0)

∂�(x0)
= 0. (19)

If this has no solution, we demand as the next-best condition of minimal dependence on
�(x0) [3, 5, 8, 9]

∂2W�
N (x0)

∂�2(x0)
= 0. (20)

The result is called theoptimal frequency�N(x0) of order N . It yields the truncated
sumWN(x0) ≡ W�N(x0)

N (x0) which represents the desiredN th-order approximation to the
effective classical potentialV eff,cl(x0). The first-order approximationW1(x0) coincides with
the original variational result of Feynman and Kleinert [2] which satisfies the Jensen–Peierls
inequality and guarantees the existence of an extremum (19).

The accuracy of the approximate effective classical potentialWN(x0) can be assessed
by the following considerations [9]. In the limit of high temperatures whereβ → 0, the
approximationWN(x0) becomes exact for anyN :

lim
β→0

WN(x0) = V (x0). (21)

At low temperatures, whereβ → ∞, we obtain from (5) and (8) an approximation to the
free energy in form of an integral over the time-averaged positionx0

FN = − 1

β
log

{∫ +∞
−∞

d̃x0 exp[−βWN(x0)]

}
(22)

whose integrand is centred sharply around the minimumxmin
N of WN(x0). Performing this

integral in the saddle-point approximation yields anN th-order approximationE(0)N for the
ground-state energyE(0) of the quantum system.

E
(0)
N = min

x0

lim
β→∞

WN(x0). (23)

The same approximation to the ground-state energy can also be obtained by a variational
resummation [9] of the Rayleigh–Schrödinger perturbation series forE(0). This will be
shown in section 6 for the ground-state energy of the Coulomb potential up to the order
N = 2.

3. Evaluation of path integrals

In order to calculate the different terms in the variational perturbation expansion (16), we
must find efficient formulae for evaluating local correlation functions of type (15). For this
we observe that, by fixing the temporal average atx̄ = x0 in the path integral, the zero
Matsubara frequencyω0 = 0 is removed from the Fourier decomposition of the periodic
paths

x(τ) = x0+
∞∑
m=1

(xmeiωmτ + x∗me−iωmτ ) ωm = 2πm/h̄β. (24)
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In fact, the restricted integration measure
∮
Dx(τ)δ̃(x − x0) in (15) may be decomposed

into a product of ordinary integrals over real and imaginary partsxre
m andx im

m of the Fourier
componentsxm according to [9]:∮

Dx(τ)δ̃(x − x0) =
∞∏
m=1

(∫ +∞
−∞

dxre
m

∫ +∞
−∞

dx im
m

βMω2
m

π

)
. (25)

The zero-frequency componentx0 remains unintegrated. With this decomposition, the basic
local pair correlation function of the fluctuationsδx(τ ) in (4) can immediately be calculated
from (15) as a Matsubara sum without the zero mode:

G
x0
� (τ, τ

′) ≡ 〈δx(τ )δx(τ ′)〉x0
� =

2

Mβ

∞∑
m=1

cosωm(τ − τ ′)
ω2
m +�2(x0)

. (26)

Performing the sum yields the explicit result

G
x0
� (τ, τ

′) = h̄

2M�(x0)

{
cosh[�(x0)|τ − τ ′| − h̄β�(x0)/2]

sinh[h̄β�(x0)/2]
− 2

h̄β�(x0)

}
. (27)

The first term is the ordinary oscillator correlation function of frequency�

G�(τ, τ
′) ≡ 〈x(τ)x(τ ′)〉� = 1

Mβ

∞∑
m=−∞

cosωm(τ − τ ′)
ω2
m +�2(x0)

(28)

while the last term subtracts the zero mode which is absent in (26). This absence has the
important consequence that∫ h̄β

0
dτ Gx0

� (τ, τ
′) = 0. (29)

Using (27), the expectation values in (15) can easily be calculated for a polynomial
potential using Wick’s contraction rules, by which the expectation values can be reduced
to sums over products of pair correlation functionsGx0

� (τ, τ
′). In order to abbreviate the

notation and to emphasize the dimension (length)2 of these quantities, we shall denote the
local Green functions in (27) from now on bya2

ττ ′(x0). The harmonic expectation value of
any odd powern in the fluctuation variableδx(τ ) is zero. For evenn, the Wick expansion
reads 〈 n∏

k=1

δx(τk)

〉x0

�

=
∑
P

a2
τP (1)τP (2)

(x0) . . . a
2
τP (n−1)τP (n)

(x0) (30)

where the sum runs over all(n − 1)!! pair contractions. For an exponential, Wick’s rule
implies〈

exp

[
i
∫ h̄β

0
dτ j (τ )δx(τ )

]〉x0

�

= exp

[
− 1

2

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′ j (τ )a2

ττ ′(x0)j (τ
′)
]
. (31)

In the special casej (τ ) = ∑n
k=1 ukδ(τ − τk), we obtain the important formula for the

expectation value of a product of exponentials〈 n∏
k=1

eiukδx(τk)

〉x0

�

= exp

[
− 1

2

n∑
k=1

n∑
k′=1

uka
2
τkτk′ (x0)uk′

]
. (32)
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After Fourier-decomposing the functionsF1(x), . . . , Fn(x) in (15), formula (32) yields
directly the desired smearing formula [13]

〈F1(x(τ1)) . . . Fn(x(τn))〉x0
� =

[ n∏
k=1

∫ +∞
−∞

dxk Fk(xk)

]
1√

(2π)nDet[a2
τkτk′ (x0)]

× exp

[
− 1

2

n∑
k=1

n∑
k′=1

δxk a
−2
τkτk′ (x0)δxk′

]
(33)

wherea−2
τkτk′ (x0) denotes the inverse of the symmetricn×n matrix a2

τkτk′ (x0). This smearing
formula determines the different harmonic expectation values in the variational perturbation
expansion (16) as convolutions with Gaussian functions.

For n = 1, the smearing formula (33) reduces to the previous one [2, 9]

〈F1(x(τ1))〉x0
� =

∫ +∞
−∞

dx1F1(x1)
1√

2πa2(x0)
exp

[
− (x1− x0)

2

2a2(x0)

]
(34)

wherea2(x0) denotes theτ -independent diagonal matrix elementa2
ττ (x0). For polynomials

F1(x), the smearing formula (33) reproduces Wick’s rule: odd powers inδx(τ ) have
vanishing local correlation functions, whereas even powers result in (30), which for
coinciding timesτk reduces to

〈[δx(τk)]n〉x0
� = (n− 1)!!an(x0). (35)

For two functionsF1(x) andF2(x), our smearing formula (33) reads, more explicitly,

〈F1(x(τ1))F2(x(τ2))〉x0
� =

∫ +∞
−∞

dx1

∫ +∞
−∞

dx2F1(x1)F2(x2)
1√

(2π)2[a4(x0)− a4
τ1τ2
(x0)]

× exp

{
−a

2(x0)(x1− x0)
2− 2a2

τ1τ2
(x0)(x1− x0)(x2− x0)+ a2(x0)(x2− x0)

2

2[a4(x0)− a4
τ1τ2
(x0)]

}
.

(36)

SpecializingF2(x) to the square of the functionδx, we obtain the useful rule

〈F1(x(τ1))[δx(τ2)]
2〉x0
� = a2(x0)

[
1− a

4
τ1τ2
(x0)

a4(x0)

]
〈F1(x(τ1))〉x0

�

+a
4
τ1τ2
(x0)

a4(x0)
〈F1(x(τ1))[δx(τ1)]

2〉x0
� (37)

which reduces the smearing procedure for different timesτ1 and τ2 to corresponding ones
at equal timesτ1 = τ2. With this we immediately yield, for instance,

〈[δx(τ1)]
2[δx(τ2)]

2〉x0
� = a4(x0)+ 2a4

τ1τ2
(x0). (38)

In three dimensions, the trial potential contains a 3×3 frequency matrix�ij depending
on the time-averaged positionx0 and reads

M

2

3∑
i,j=1

�2
ij (x0)(xi − x0i )(xj − x0j ) (39)

while the interaction potential (12) becomes

V
x0

int (x) = V (x)−
M

2

3∑
i,j=1

�2
ij (x0)(xi − x0i )(xj − x0j ). (40)
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Assuming the potential to depend only onr = |x|, i.e. V (x) = v(r), the frequency matrix
possesses only two invariant matrix elements, a longitudinal one�L(r0) and a transversal
one�T(r0) [9, 11]. The interaction potential (40) can then be decomposed into a longitudinal
and a transversal part according to

�2
ij (x0) = �2

L(r0)
x0ix0j

r2
0

+�2
T(r0)

(
δij − x0ix0j

r2
0

)
(41)

so that (40) may be rewritten as

V
x0

int (x) = v(r)−
M

2
{�2

L(r0)[δx]2
L +�2

T(r0)[δx]2
T} (42)

with obvious definitions of the longitudinal and transverse projectionsδxL andδxT of the
fluctuationsδx.

To first order, the anisotropic generalization of the smearing formula (34) reads [9, 11]

〈F1(x(τ1)〉r0�T,�L
=
∫ +∞
−∞

d3x1F1(x1)
1√

(2π)3a4
Ta

2
L

exp

{
−x

2
1T

2a2
T

− (x1L − r0)2
2a2

L

}
. (43)

For the squares of transverse and longitudinal fluctuations, this generalizes (35) withn = 2
to

〈[δx(τ1)]
2
T〉r0�T,�L

= 2a2
T 〈[δx(τ1)]

2
L〉r0�T,�L

= a2
L . (44)

The second-order smearing formula (36) becomes in three dimensions

〈F1(x(τ1)F2(x(τ2)〉r0�T,�L
=
∫ +∞
−∞

d3x1

∫ +∞
−∞

d3x2F1(x1)F2(x2)

× 1

(2π)3(a4
T − a4

Tτ1τ2
)

√
a4

L − a4
Lτ1τ2

× exp

{
−a

2
Tx

2
1T− 2a2

Tτ1τ2
x1Tx2T+ a2

Tx
2
2T

2(a4
T − a4

Tτ1τ2
)

}

× exp

{
−a

2
L(x1L − r0)2− 2a2

Lτ1τ2
(x1L − r0)(x2L − r0)+ a2

L(x2L − r0)2
2(a4

L − a4
Lτ1τ2

)

}
(45)

so that the rule (37) for expectation values is generalized to

〈F1(x(τ1)[δx(τ2)]
2
T〉r0�T,�L

= 2a2
T

[
1− a

4
Tτ1τ2

a4
T

]
〈F1(x(τ1))〉r0�T,�L

+ a
4
Tτ1τ2

a4
T

〈F1(x(τ1))[δx(τ1)]
2
T〉r0�T,�L

(46)

〈F1(x(τ1)[δx(τ2)]
2
L〉r0�T,�L

= a2
L

[
1− a

4
Lτ1τ2

a4
L

]
〈F1(x(τ1))〉r0�T,�L

+a
4
Lτ1τ2

a4
L

〈F1(x(τ1)[δx(τ1)]
2
L〉r0�T,�L

. (47)
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SpecializingF1(x) to a quadratic function, we obtain the corresponding generalizations of
(38)

〈[δx(τ1)]
2
T[δx(τ2)]

2
T〉r0�T,�L

= 4a4
T + 4a4

Tτ1τ2
(48)

〈[δx(τ1)]
2
T[δx(τ2)]

2
L〉r0�T,�L

= 2a2
Ta

2
L (49)

〈[δx(τ1)]
2
L[δx(τ2)]

2
L〉r0�T,�L

= a4
L + 2a4

Lτ1τ2
. (50)

4. Application to Coulomb potential

Let us demonstrate the use of the new smearing formulae by calculating the effective
classical potential of the three-dimensional Coulomb potential

v(r) = −e
2

r
(51)

up to the second order in the variational perturbation expansion, thus going beyond the
known first-order results in [9, 11]. To this end we express the Coulomb potential (51) as
a ‘proper-time’ integral

1

r
= 4π

∫ +∞
−∞

d3k

(2π)3

∫ +∞
0

dσ e−σk
2−ikx (52)

whereσ has the dimension (length)2, and find the expectation value〈
1

|x(τ1)|
〉r0
�T,�L

=
√

2a2
L

π

∫ 1

0
dλ

1

(a2
T − a2

L)λ
2+ a2

L

exp

{
− r2

0

2a2
L

λ2

}
. (53)

From a straight-forward three-dimensional extension of (16), the first-order variational
approximation to the effective classical potential is then [9, 11]

W
�T,�L
1 (r0) = 2

β
log

sinh[h̄β�T/2]

h̄β�T/2
+ 1

β
log

sinh[h̄β�L/2]

h̄β�L/2
− M

2
{2�2

Ta
2
T +�2

La
2
L}

− e2

√
2a2

L

π

∫ 1

0
dλ

1

(a2
T − a2

L)λ
2+ a2

L

exp

{
− r2

0

2a2
L

λ2

}
(54)

where we have omitted the argumentr0 from all functions on the right-hand side. A
similar expression was derived in the isotropic approximation�L = �T with the help of
Gaussian wavepackets in the context of plasma physics for the purpose of faster simulations
of molecular dynamics [14–16].

By inserting the ‘proper-time’ integral for the Coulomb potential (52) into the rules (46)
and (47), we find〈

1

|x(τ1)| [δx(τ2)]
2
T

〉r0
�T,�L

=
√

2a2
L

π

∫ 1

0
dλ exp

{
− r2

0

2a2
L

λ2

}
×
{

2a2
T

(a2
T − a2

L)λ
2+ a2

L

− 2a4
Tτ1τ2

λ2

[(a2
T − a2

L)λ
2+ a2

L]2

}
(55)

〈
1

|x(τ1)| [δx(τ2)]
2
L

〉r0
�T,�L

=
√

2a2
L

π

∫ 1

0
dλ exp

{
− r2

0

2a2
L

λ2

}
a6

L + a4
Lτ1τ2

[r2
0λ

4− a2
Lλ

2]

a4
L[(a2

T − a2
L)λ

2+ a2
L]

. (56)
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Note that these results are also special cases of the general expectation value

〈
1

|x(τ1)|F(x(τ2))

〉r0
�T,�L

= 1

2π2

∫ +∞
0

dσ

exp

{
− a2

Lr
2
0

2[a4
L − a4

Lτ1τ2
+ 2a2

Lσ ]

}
[a4

T − a4
Tτ1τ2
+ 2a2

Tσ ]
√
a4

L − a4
Lτ1τ2
+ 2a2

Lσ

×
∫ +∞
−∞

d3x F(x) exp

{
− (a2

T + 2σ)x2
T

2[a4
T − a4

Tτ1τ2
+ 2a2

Tσ ]

− (a
2
L + 2σ)(xL − r0)2+ 2a2

Lτ1τ2
r0(xL − r0)

2[a4
L − a4

Lτ1τ2
+ 2a2

Lσ ]

}
(57)

which gives us the additional local expectation value〈
1

|x(τ1)|
1

|x(τ2)|
〉r0
�T,�L

= 2

π

∫ +∞
0

dσ1

∫ +∞
0

dσ2
1

[a2
T + 2σ1][a2

T + 2σ2] − a4
Tτ1τ2

× 1√
[a2

L + 2σ1][a2
L + 2σ2] − a4

Lτ1τ2

exp

{
− r2

0[a2
L + σ1+ σ2− a2

Lτ1τ2
]

[a2
L + 2σ1][a2

L + 2σ2] − a4
Lτ1τ2

}
.

(58)

From these smearing results we calculate the connected correlation functions of the
interaction potential (40) according to the cumulant law (18), and insert these into (16)
to obtain the second-order effective classical potential

W
�T,�L
2 (r0) = W�T,�L

1 (r0)+ e
2M

2h̄

√
2a2

L

π

×
∫ 1

0
dλ

{
2�Tl

4
Tλ

2

[(a2
T − a2

L)λ
2+ a2

L]2
− �L l

4
L[r2

0λ
4− a2

Lλ
2]

a4
L[(a2

T − a2
L)λ

2+ a2
L]

}
exp

{
− r2

0

2a2
L

λ2

}
−M

2[2�3
Tl

4
T +�3

L l
4
L]

4h̄
− e4

2h̄2β

∫ h̄β

0
dτ1

∫ h̄β

0
dτ2

〈
1

|x(τ1)|
1

|x(τ2)|
〉r0
�T,�L ,c

(59)

with the abbreviation

l4T,L =
h̄[4+ h̄2β2�2

T,L − 4 coshh̄β�T,L + h̄β�T,L sinhh̄β�T,L]

8βM2�3
T,L sinh2[h̄β�T,L/2]

(60)

which is a function ofr0 of dimension (length)4. After extremizing (54) and (59) with
respect to the trial frequencies�T, �L according to (19), which has to be done numerically
we obtain the first- and second-order approximations for the effective classical potential of
the Coulomb system. The isotropic approximations�T = �L in the first and second order
are plotted in figure 1 for various temperatures. The second-order curves lie all below the
first-order ones, and the difference between the two decreases with increasing temperature
and increasing distance from the origin. Figure 2 shows exemplarily that the anisotropic
approximation slightly deviates from the isotropic one. The difference between both is only
visible for intermediate distances from the origin.
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Figure 1. Isotropic approximations to the effective classical potential of the Coulomb system
in the first (lines) and second order (dots). The temperatures are 0.0001, 0.001, 0.01, 0.1 and
∞ from the top to the bottom in atomic units. The high temperature limit is the same for all
approximationsWN(r0).

5. Zero-temperature limit

In order to check our results we take (54) and (59) to the limitT → 0, whereW�
1 (r0) and

W�
2 (r0) reduce atr0 = 0, according to (23), to the ground-state energy of the Coulomb

system. Atr0 = 0, the frequencies are isotropic�L = �T = � for symmetry reasons, thus
simplifying the evaluation (54) and (59). Taking into account the low temperature limit of
the two-point correlations (27)

lim
β→∞

a2
τkτk′ (x0) = h̄

2M�(x0)
e−�(x0)|τk−τk′ | (61)

we immediately deduce for the first-order approximation (54) atx0 = 0 with � = �(0)
the limit

E
(0)
1 (�) = lim

β→∞
W�

1 (0) =
3

4
h̄�− 2√

π

√
M�

h̄
e2. (62)

To second order, the limit is more involved. Performing the integrals overσ1 andσ2 in
(58), we obtain with (18) the connected correlation function〈

1

|x(τ1)|
1

|x(τ2)|
〉0

�,c

= 1

a4
τ1τ2
(0)
− 2

πa4
τ1τ2
(0)

arctan

√
a2
τ1τ2
(0)

aτ1τ2(0)
− 1− 2

πa2
τ1τ2
(0)
. (63)

Inserting here the zero-temperature limit (61), we can integrate these expressions over the
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Figure 2. Isotropic and anisotropic approximations to the effective classical potential of the
Coulomb system in the first and second order at the temperature 0.1 in atomic units. The lowest
line represents the high temperature limit in which all isotropic and anisotropic approximations
coincide.

imaginary timesτ1, τ2 ∈ [0, h̄β], and find for largeβ∫ h̄β

0
dτ1

∫ h̄β

0
dτ2

〈
1

|x(τ1)|
1

|x(τ2)|
〉0

�,c

= 4M

h̄�

{
eh̄β� − 1− h̄β�− h̄

2β2�2

π
− 2

π

×
[

eh̄β� arcsin
√

1− e−2h̄β� + 1

2
logα(β)

−1

8
[logα(β)]2− 1

2

∫ 1

α(β)

du
logu

1+ u
]}

(64)

with the abbreviation

α(β) = 1−√1− e−2h̄β�

1+√1− e−2h̄β�
. (65)

Inserting this into (59) and going to the limitβ →∞, we find the ground-state energy

E
(0)
2 (�) = lim

β→∞
W�

2 (0) =
9

16
h̄�− 3

2
√
π

√
M�

h̄
e2− 4

π

(
1+ log 2− π

2

) M
h̄2 e

4. (66)

Postponing for a moment the extremization of (62) and (66) with respect to the trial
frequency�, let us first rederive this result from a variational treatment of the ordinary
Rayleigh–Schr̈odinger perturbation expansion for the ground-state energy.
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6. Variational treatment of Rayleigh–Schr̈odinger perturbation expansion

According to the rules laid out in [9], we must first calculate the ground-state energy for
the Coulomb potential in the presence of a harmonic potential of frequencyω:

Vaux(x) = M

2
ω2x2− e2

|x| . (67)

After this, we make the trivial replacementω→√�2+ ω2−�2, and re-expand the energy
in powers of the differenceω2−�2, considering this quantity as being of the ordere2 and
truncating the re-expansion accordingly. At the end we setω = 0, since the original
Coulomb system contains no oscillator potential. Note that this limit is equivalent to a
strong-coupling limit of (67) with respect toe2. The result of this treatment will coincide
precisely with the expansions (62) and (66), respectively.

The Rayleigh–Schrödinger perturbation expansion of the ground-state energyEaux
N (ω)

for the potential (67) requires knowledge of the matrix elements of the Coulomb potential
(51) with respect to the eigenfunctionsψn,l,m(r, ϑ, ϕ) of the harmonic oscillator with the
frequencyω [9]:

Vn,l,m;n′,l′,m′ =
∫ 2π

0
dϕ
∫ π

0
dϑ sinϑ

∫ ∞
0

dr r2ψ∗n,l,m(r, ϑ, ϕ)
−e2

r
ψn′,l′,m′(r, ϑ, ϕ) (68)

ψn,l,m(r, ϑ, ϕ) =
√

2n!

0(n+ l + 3/2)
4

√
Mω

h̄

(
Mω

h̄
r2

)(l+1)/2

×Ll+1/2
n

(
Mω

h̄
r2

)
exp

{
−Mω

2h̄
r2

}
Yl,m(ϑ, ϕ). (69)

Here n denotes the radial quantum number,Lαn(x) the Laguerre polynomials [17], and
Yl,m(ϑ, ϕ) the spherical harmonics obeying the orthonormality relation∫ 2π

0
dϕ
∫ π

0
dϑ sinϑY ∗l,m(ϑ, ϕ)Yl′,m′(ϑ, ϕ) = δl,l′δm,m′ . (70)

Inserting (69) into (68), and evaluating the integrals with equation (2.19.14.15) in [18], we
find

Vn,l,m;n′,l′,m′ = −e2

√
Mω

πh̄

0(l + 1)0(n+ 1/2)

0(l + 3
2)

√
0(n′ + l + 3/2)

n!n′!0(n+ l + 3
2)

×3F2(−n′, l + 1, 1
2; l + 3

2,
1
2 − n; 1)δl,l′δm,m′ (71)

with the generalized hypergeometric series [17]

3F2(α1, α2, α3;β1, β2; x) =
∞∑
k=0

(α1)k(α2)k(α3)k

(β1)k(β2)k

xk

k!
(72)

and the Pochhammer symbol(α)k = 0(α + k)/0(α).
These matrix elements are now inserted into the Rayleigh–Schrödinger perturbation

expansion for the ground-state energy

Eaux(ω) = E0,0,0+ V0,0,0;0,0,0+
′∑

n,l,m

V0,0,0;n,l,mVn,l,m;0,0,0
E0,0,0− En,l,m

−
′∑

n,l,m

V0,0,0;0,0,0
V0,0,0;n,l,mVn,l,m;0,0,0

[E0,0,0− En,l,m]2



Smearing formula for higher-order effective classical potentials 8319

+
′∑

n,l,m

′∑
n′,l′,m′

V0,0,0;n,l,mVn,l,m;n′,l′,m′Vn′,l′,m′;0,0,0
[E0,0,0− En,l,m][E0,0,0− En′,l′,m′ ] + · · · (73)

the denominators containing the energy eigenvalues of the harmonic oscillator

En,l,m = h̄ω(2n+ l + 3
2). (74)

The primed summations in (73) run over all values of the quantum numbersn, l =
−∞, . . . ,+∞ andm = −l, . . . ,+l, excluding those for which the denominators vanish.
For the first three orders we obtain from (71)–(74)

Eaux(ω) = 3

2
h̄ω − 2√

π

√
Mω

h̄
e2− 4

π

(
1+ log 2− π

2

) M
h̄2 e

4− c
√
M3

h̄7ω
e6+ · · · (75)

with the constant

c = 1

π3/2

{ ∞∑
n=1

1 · 3 · . . . · (2n− 1)

2 · 4 · . . . · 2n
1

n2(n+ 1
2)
−
∞∑
n=1

∞∑
n′=1

1 · 3 · . . . · (2n− 1)

2 · 4 · . . . · 2n

×1 · 3 · . . . · (2n′ − 1)

2 · 4 · . . . · 2n′
3F2(−n′, l + 1, 1

2; l + 3
2,

1
2 − n; 1)

nn′(n+ 1
2)

}
≈ 0.0318. (76)

The variational re-expansion procedure described after equation (67) replacesω in the first
term by�(1−1)1/2, to be expanded in the second one up to third order as 1− 1

2− 1
8− 1

16 = 5
16.

Correspondingly the term 3ω/2 becomes15
32ω. The factorω1/2 goes over into�1/2(1−1)1/4,

to be expanded to second order in the second one, yielding�1/4(1− 1
4 − 3

32) = 21
32. The

next term in (75) happens to be independent ofω and needs no re-expansion, whereas the
last term remains unchanged since it is of highest order. In this way we obtain from (75)
the third-order variational expression

E
(0)
3 (�) = 15

32
h̄�− 21

16
√
π

√
M�

h̄
e2− 4

π

(
1+ log 2− π

2

) M
h̄2 e

4− c
√
M3

h̄7�
e6. (77)

We are now ready to optimize successively the expansions of first, second, and third order
(62), (66) and (77) with respect to the trial frequency�. From the extrema we find the
frequencies

�1 = �2 = 16

9π

Me4

h̄3 �3 = c′2Me
4

h̄3 (78)

wherec′ ≈ 0.7254 is the largest of the three solutions of the cubic equation 15c′3−21c′2/π+
16c. The corresponding approximations to the ground-state energy are

E
(0)
N (�N) = −γN

Me4

h̄2 (79)

with the constants

γ1 = 4

3π
≈ 0.424 γ2 = 5+ 4 log 2

π
− 2≈ 0.474 γ3 ≈ 0.490 (80)

which quickly approaching the exact valueγex = 0.5, as shown in figure 3.
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Figure 3. Rapid approach of the variational approximations to the ground-state energyE
(0)
N (�N)

to the correct ground-state energy−0.5 (in natural energy unitsMe4/h̄2). The right-hand
logarithmic plot shows a slope−1.

7. Summary and outlook

In this work we have extended the rules for calculating higher orders in variational
perturbation theory from polynomial to non-polynomial interactions. The effective classical
potential of a quantum mechanical system is obtained from an extension of the known first-
order smearing formula, and involves certain convolutions with Gaussian functions. As
an example, we have applied the higher-order smearing formula to the Coulomb system.
We have illustrated the fast convergence of the variational perturbation expansion even
for such a singular potential. The new smearing formula will help improving the existing
first-order variational results for partition function and density matrix, also in dissipative
quantum systems [19, 20]. It will also be of use in treating field theories with nonpolynomial
interactions such as sine-Gordon and Liouville theories.
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